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Turbulent transport is a key issue for controlled thermonuclear fusion based on magnetic
confinement. The thermal confinement of a magnetized fusion plasma is essentially deter-
mined by the turbulent heat conduction across the equilibrium magnetic field. It has long
been acknowledged, that the prediction of turbulent transport requires to solve Vlasov-
type gyrokinetic equations. Although the kinetic description is more accurate than fluid
models (MHD, gyro-fluid), because among other things it takes into account nonlinear res-
onant wave–particle interaction, kinetic modeling has the drawback of a huge computer
resource request. An unifying approach consists in considering water-bag-like weak
solutions of kinetic collisionless equations, which allow to reduce the full kinetic Vlasov
equation into a set of hydrodynamic equations, while keeping its kinetic behaviour. As a
result this exact reduction induces a multi-fluid numerical resolution cost. Therefore
finding water-bag-like weak solutions of the gyrokinetic equations leads to the birth of
the gyro-water-bag model. This model is suitable for studying linear and nonlinear
low-frequency micro-instabilities and the associated anomalous transport in magneti-
cally-confined plasmas. The present paper addresses the derivation of the nonlinear
gyro-water-bag model, its quasilinear approximation and their numerical approximations
by Runge–Kutta semi-Lagrangian methods and Runge–Kutta discontinuous Galerkin
schemes respectively.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

It is generally recognized that the anomalous transport observed in nonuniform magnetized plasmas is related to the
existence of turbulent low-frequency electromagnetic fluctuations, i.e. with frequency much lower than the ion gyrofre-
quency. The presence of density, temperature and velocity gradients in the transverse direction of the magnetic confinement
field, generates micro-instabilities which give rise to this turbulent transport. Low-frequency ion-temperature-gradient-dri-
ven (ITG) instability is one of the most serious candidates to account for the anomalous transport [43], as well as the so-
called trapped electron modes (TEM) [38]. As the main energy loss in a controlled fusion devices is of conductive nature,
the energy confinement time has the same order as the diffusion time a2=vT where vT is the thermal diffusivity and ‘‘a”
the transverse plasma size. Therefore it is crucial to determine this transport coefficient by computing the turbulent
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nonlinear diffusivities in fusion plasmas. During recent years, ion turbulence in tokamaks has been intensively studied both
with fluid (see for instance [17,23,34]) and gyrokinetic simulations using PIC codes [39,42,33] or Vlasov codes [14,25,16,11].

As far as the turbulent diffusion is concerned, it is commonly observed [18] that there exists a factor two between
kinetic and fluid simulations ðvfluid > 2vkineticÞ. Therefore the kinetic or fluid description may significantly impact the
instability threshold as well as the predicted turbulent transport. The reasons of this observation is not really well under-
stood: nonlinear Landau effects or nonlinear resonant wave–particle interaction, damping of poloidal velocity fluctuations,
etc.

Consequently, it is important that gyrokinetic simulations measure the discrepancy between the local distribution func-
tion and a Maxwellian one, which is the main assumption of fluid closures.

In a recent paper [40] a comparison between fluid and kinetic approach has been addressed by studying a 3D kinetic
interchange. A simple drift kinetic model is described by a distribution depending only on two spatial dimensions and
parametrized by the energy. In that case it appears that the distribution function is far from a Maxwellian and cannot be
described by a small number of moments. Wave–particle resonant processes certainly play an important role and most of
the closures that have been developed will be inefficient.

On the other hand, although more accurate, the kinetic description of turbulent transport is much more demanding in
computer resources than fluid simulations. This motivated us to revisit an alternative approach based on the water-bag-like
weak solution of kinetic equations.

The water-bag model was introduced initially by DePackh [13], Hohl and co-workers [20,2,3], next extended to a double
water-bag by Berk and Roberts [1] and finally generalized to the multiple water-bag by Finzi [21,37,4–6]. The water-bag
model was shown to bring the bridge between fluid and kinetic description of a collisionless plasma, allowing to keep
the kinetic aspect of the problem with the same complexity as a multi-fluid model. The aim of this paper is to use the
water-bag description for gyrokinetic modeling.

After a brief introduction of the well known gyrokinetic equations hierarchy, we present the gyro-water-bag (GWB) mod-
el. We next derive a self-consistent quasilinear model, suitable for numerical simulation, in order to describe weak turbu-
lence of magnetized plasmas in a cylinder. Therefore we propose numerical approximation schemes, one based on
discontinuous Galerkin methods for solving the quasilinear equations, another based on semi-Lagrangian methods for solv-
ing the fully nonlinear equations. We then present some numerical results obtained in the context of plasma turbulence dri-
ven by ITG instabilities. Finally we make a comparison with results given by nonlinear and quasilinear simulations.
2. The gyro-water-bag model

2.1. The gyrokinetic equation

Predicting turbulent transport in collisionless fusion plasmas requires to solve the gyrokinetic equations for all species
coupled to Darwin or Poisswell equations (low-frequency approximations of Maxwell equations in the asymptotic limit of
infinite speed of light [7]). This gyrokinetic approach has been widely used in recent years to study low-frequency micro-
instabilities in a magnetically-confined plasma which are known for exhibiting a wide range of spatial and temporal scales.
Gyrokinetic ordering employs the fact that the characteristic frequencies of the waves and gyroradii are small compared
with the gyrofrequencies and unperturbed scale lengths, respectively, and that the perturbed parallel scale length is of
the same order as the unperturbated scale length. Such an ordering enables one to be rid of the explicit dependence on
the phase angle of the Vlasov equation through gyrophase-averaging while retaining the gyroradius effects to the arbitrary
values of the gyroradius over the perturbated perpendicular scale length. The conventional approach [22] to derive the gyr-
okinetic Vlasov equation is based on a maximal multiple-scale-ordering expansion involving a single ordering parameter,
which consists in computing an iterative solution of the gyroangle-averaged Vlasov equation perturbatively expanded in
powers of a dimensionless parameter q=L, where q is the Larmor radius and L, the characteristic background magnetic field
or plasma density and temperature nonuniformity length scale. A modern foundation of nonlinear gyrokinetic theory
[19,26,9] is based on a two-step Lie-transform approach. The first step consists in the derivation of the guiding-center
Hamilton equations, from the Hamiltonian particle dynamics, through the elimination of the gyroangle associated with
the gyromotion time-scale of charged particles. If one takes into account finite gyroradius effects, one needs to reintroduce
the gyroangle dependence into the perturbated guiding-center Hamiltonian dynamics which results that the magnetic mo-
ment l is only conserved at first order in the dimensionless ordering parameter featuring electrostatic perturbations.
Therefore one needs to perform a second-order perturbation analysis to derive the nonlinear gyrocenter dynamics. As a
result, the second step consists in deriving a new set of gyrocenter Hamiltonian equations from the perturbated guid-
ing-center equations, through a time-dependent gyrocenter phase-space transformation and gyroangle elimination. Finally,
a reduced variational principle [10,9] enables one to derive self-consistent expressions for the nonlinear gyrokinetic Vlasov
Maxwell equations. Within gyrokinetic Hamiltonian formalism, the Vlasov equation expresses the fact that the ions gyro-
center distribution function f ¼ f ðt; r; vk;lÞ is constant along gyrocenter characteristic curves in gyrocenter phase-space
ðt; r; vk;lÞ:
Dtf ¼ @tf þ _X? � r?f þ _Xk � rkf þ _vk@vk f ¼ 0 ð1Þ
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with
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where b ¼ B=B denotes the unit vector along magnetic field line, J l denotes the gyroaverage operator, N=Rc is the field line
curvature, qi ¼ Zie; e > 0 being the electron Coulomb charge, and l ¼ miv2

?=ð2BÞ is the first adiabatic invariant of the ion
gyrocenter. The structure of the distribution function f, solution of (1), is of the form
f ðt; r;vk;lÞ ¼
X
‘

f‘ðt; r; vkÞdðl� l‘Þ: ð2Þ
Let us notice that it is an interesting problem to know what is the asymptotic statistical distribution function in l in (2) if we
consider an infinite number of magnetic moments, because it allows to save CPU time and memory space in numerical codes.
In [27,31,32], the authors take the distribution mi expð�lB=Ti0Þ=Ti0. If we now assume that the background distribution is
Maxwellian in l with temperature Ti0 and linearly varying density ni0, then after linearization around the background dis-
tribution ðni ¼ ni0 þ dni; dni=ni0 � ed � 1Þ the Fourier transformed Poisson equation becomes
jkj2k2
Di
þ 1� C0ðbÞ � ½C1ðbÞ � C0ðbÞ�ik? � ðq2

ir? ln ni0Þ
n o

Ziqi
ni0

kBTi0
/k ¼ Zi

Z
J0 k?

ffiffiffiffiffiffiffiffiffi
2l
Xiqi

s !
fk2pXi

qi
dldvk � nek; ð3Þ
where q2
i ¼ v2

thi=X
2
i ¼ kBTi=ðmiX

2
i Þ is the ion Larmor radius, b ¼ k2

?q2
i ; k

2
Di
¼ kBTi=ð4pe0Z2

i e2ni0Þ is the ion Debye length,
CnðbÞ ¼ InðbÞ expð�bÞ; In is a modified Bessel function of order n, and where J0 is a Bessel function of zero order. Eq. (3) de-
scribes linear drift waves for k?qi ¼ Oð1Þ and nonlinear drift waves for small k?qi. Firstly we are interested in the effects of
the transversal drift velocity E� B coupled to the parallel dynamics while the curvature effects are considered as a next stage
of the study. As a result, in the sequel we deal with a reduced gyrokinetic model in cylindrical geometry by making the fol-
lowing approximations:

	 In addition of cylindrical geometry, we suppose that the magnetic field B is uniform and constant along the axis of the
column (z-coordinate, B ¼ Bb ¼ Bez). It follows the perpendicular drift velocity does not admit any magnetic curvature
or gradient effect and especially B� ¼ B.

	 We suppose that we have a finite discrete sequence of adiabatic invariant N ¼ flg linked to a finite discrete sequence of
ion Larmor radius K ¼ fqg by l ¼ q2Xiqi=2. Since the gyroaverage linear differential operator J l becomes the Bessel func-
tion J0ðk?

ffiffiffiffiffiffiffi
2l

p
=
ffiffiffiffiffiffiffiffiffi
Xiqi

p
Þ in the Fourier space, if we suppose k?q small ðk?qK 1Þ then we can use the approximation
J0ðk?qÞ ¼ 1� k2
?q2

4
þOðk4

?q
4Þ ¼ 1

1þ k2
?q2

4

þOðk4
?q

4Þ;
which means in term of differential operator that we make the approximation
J l � 1� q2

4
D

� ��1

: ð4Þ
	 We linearize the left hand side of Eq. (3) by considering k?qi small and neglecting all terms smaller than Oðk2
?q2

i Þ. More-
over we assume that the ion Debye length kDi

is small compared to the ion Larmor radius qi and we suppose that Xi is a
constant X0.

	 The electron inertia is ignored, i.e. we choose and adiabatical response to the low-frequency fluctuations for the electrons.
In other words the electron density follows the Boltzmann distribution:
ne ¼ ne0 exp
e

kBTe
ð/� kh/iMÞ

� �
;
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where h/iM denotes the average of the electrical potential / over a magnetic surface. Moreover we assume that the electrical
potential is small compared to the electron kinetic energy e/=ðkBTeÞ � ed � 1.

Under these assumptions the evolution of the sequence of ion guiding-center distribution functions fl ¼ flðt; r?; z;vkÞ
obeys the gyrokinetic Vlasov equations (see [25] for more details)
@tfl þ J lvE � $?fl þ vk@zfl þ
qi

mi
J lEk@vk fl ¼ 0; 8l 2 N; ð5Þ
for the ions ðqi;MiÞ, coupled to an adiabatic electron response via the quasineutrality assumption
�r? �
ni0

BX0
r?/

� �
þ esni0

kBTi0
ð/� kh/iMÞ ¼ 2p

X
l2N

Z
R

Xi

qi
J lflðt; r; vkÞdvk � ni0: ð6Þ
Here qi ¼ Zie; Zini0 ¼ ne0; Te ¼ Te0; s ¼ Ti0=Te0; k 2 f0;1g;E ¼ �r/ and vE is the E� B=B2 drift velocity. The most important
and interesting feature is that fl depends, through a differential operator, only on the velocity component vk parallel to B.

2.2. The gyro-water-bag model (GWB)

Let us now turn back to the gyrokinetic equation (5). Since the distribution flðt; r?; z;vkÞ takes into account only one
velocity component vk, a water-bag solution can be considered [4]. For each adiabatic invariant l 2 N, let us consider 2N
ordered non closed contours in the ðr;vkÞ-phase-space labelled vþlj and v�lj (where j ¼ 1; . . . ;N ) such that
� � � < v�ljþ1 < v�lj < � � � < 0 < � � � < vþlj < vþljþ1 < � � � and some strictly positive real numbers fAljgj2½1;N�; l2N that we call bag
heights. We then define the distribution function flðt; r?; z;vkÞ as
flðt; r?; z; vkÞ ¼
XN
j¼1

Alj Hðvk � v�ljðt; r?; zÞÞ � H vk � vþljðt; r?; zÞ
� �h i

; ð7Þ
whereH is the Heaviside unit step function. The function (7) is an exact solution of the gyrokinetic Vlasov equation (5) in the
sense of distribution theory, if and only if the set of following equations are satisfied:
@tv
lj þ J lvE:$?v
lj þ v
lj@zv
lj ¼
qi

mi
J lEk; j 2 ½1;N�; 8l 2 N: ð8Þ
The quasineutrality coupling (6) can be rewritten as
�r? �
ni0

BX0
r?/

� �
þ esni0

kBTi0
ð/� kh/iMÞ ¼ 2p

X
l2N

XN
j¼1

Xi

qi
AljJ lðvþlj � v�ljÞ � ni0: ð9Þ
Let us introduce for each bag j the density nlj ¼ ðvþlj � v�ljÞAlj and the average velocity ulj ¼ ðvþlj þ v�ljÞ=2. After little algebra,
Eq. (8) lead to continuity and Euler equations namely
@tnlj þ $? � ðnljJ lvEÞ þ @zðnljuljÞ ¼ 0; @tðnljuljÞ þ $? � ðnljuljJ lvEÞ þ @z nlju2
lj þ

plj

mi

� �
¼ qi

mi
nljJ lEk;
where the partial pressure takes the form plj ¼ min3
lj=ð12A2

ljÞ.
The connection between kinetic and fluid description clearly appears in the previous multi-fluid equations. The case of

one bag recovers a fluid description (with an exact adiabatic closure with c ¼ 3) and the limit of an infinite number of bags
provides a continuous distribution function.

2.3. Normalization and conservation laws

The numerical schemes developed in a forthcoming section are based on normalized equations. In our case, the temper-
ature Ti0 and Te0 are normalized to a characteristic temperature T0, which is defined such that Ti0ðr0Þ=T0 ¼ 1. The longitudinal
direction is normalized to kk, the characteristic fluctuation parallel wavenumber and the transversal direction to k?, the char-
acteristic fluctuation perpendicular wavenumber. The velocity is normalized to the ion thermal velocity v thi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ti0=mi

p
and

the time to characteristic fluctuation frequency x�1 ¼ ðkkv thiÞ�1. Finally the electrical potential / is normalized to the char-
acteristic fluctuation potential /. Moreover we define the dimensionless ordering parameters
ek ¼
kk
k?
; ex ¼

x
X0

; ed ¼
e/

kBT0
; ereq ¼

qi

Lreq

; e? ¼ qik?; ð10Þ
where qi is ion Larmor radius and Lreq is the characteristic background plasma density and temperature nonuniformity
length scale. The gyrokinetic ordering is achieved for ek � ex � ed � er;eq � e � 10�3 and e? � 1. For longer wavelengths such
that e? � 1 we obtain the drift kinetic ordering. Using the dimensionless ordering parameters (10), Eqs. (8) and (9) become
@tv
lj þ edexe�2
k Ziðez �rJ l/Þ � $?v
lj þ v
lj@zv
lj ¼ ZiedJ lEk ð11Þ
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and
�ede2
xe�2

k Zir? � ðni0r?/Þ þ
edsni0
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ð/� kh/iMÞ ¼ 2p

X
l2N
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AljJ lðvþlj � v�ljÞ � ni0: ð12Þ
The system (11) and (12) preserves some physical quantities such as the total number of particle
X
lj

Alj

Z
drðvþlj � v�ljÞ
and the total energy
X
lj

Alj

Z
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 !
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Z
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X
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 !
/; ð13Þ
where in the definition (13) the first term denotes the kinetic energy and the second one is the potential energy. Finally we
define the heat flux at a radial position r and a time t as the quantity
Qðt; rÞ ¼
X
lj

Alj

Z
dh
2p

dz
Lz

lðvþlj � v�ljÞ þ
vþ3

lj

6
�

v�3
lj

6

 !
ðez �rJ l/Þ � er :
3. Derivation of a self-consistent quasilinear gyro-water-bag model

In this section we shall derive a self-consistent quasilinear system suitable for numerical approximation. This model will
be useful to make comparison with the nonlinear model, in the linear and quasilinear regime. Every unknown is expanded as
f ðt; r; h; zÞ ¼ 1
2

f0ðt; r; zÞ þ
X
m>0

fmðt; r; zÞeihm

( )
þ c:c:; ð14Þ
where f0 is a real number and fm is a complex number. Introducing the expansion (14) into Eq. (8) and assuming the limit
k?q! 0ðJ l ! 1Þ, after some algebra we obtain
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and
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In Eqs. (17) and (18) we have used the notations U �̂ V ¼ U1V1 � U2V2;Uc� V ¼ U1V2 þ U2V1, where U and V are two-dimen-
sional vectors. The quadratic nonlinear terms in V
jm, which lead to the coupling of modes and to the existence of a saturation
regime will be neglected in (16) and kept in Eq. (15). In other words, the term F is dropped in Eq. (16). Using the dimen-
sionless ordering parameters (10), Eqs. (15) and (16), in the dimensionless form become
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Substituting the expansion (14) into Eq. (9) and using the ordering dimensionless parameters (10), we obtain the dimension-
less equations
�ede�2
k e2

xZi
1
r
@rðrni0@r/0Þ þ

edsni0

Ti0
ð/0 � kh/0iMÞ ¼

XN
j¼1

Ajðvþj0 � v�j0Þ � ni0 ð21Þ
and
�ede�2
k e2

xZi
1
r
@rðrni0@rUmÞ þ ede2

xe�2
k Zi

m2

r2 þ
edsni0

Ti0

� �
Um ¼

XN
j¼1

AjðVþjm � V�jmÞ: ð22Þ
Finally we are interested to solve the system formed by Eqs. (19)–(22).

4. Numerical approximation

This section is devoted to the numerical resolution of the fully nonlinear model (11) and (12), and the self-consistent
quasilinear model (19)–(22). Although these two models are different they should give the same results (the same growth
rate value of the ITG instability) in the linear regime. In order to cross-check the models and the numerical schemes, we de-
cide to solve every system by a different numerical method. The quasilinear model (19)–(22) is solved by using a forward
Runge–Kutta discontinuous Galerkin method while a backward Runge–Kutta semi-Lagrangian method is chosen to discret-
ize the nonlinear system (19)–(22).

4.1. Numerical approximation of the nonlinear system

In this section we present the numerical method to solve the Eqs. (11) and (12), where, without loss of generality, only
one adiabatic invariant l ¼ l0 is considered. For the sake of clarity we drop the index l. The scheme is based on a backward
Runge–Kutta semi-Lagrangian method. If we introduce the characteristic curves r
j ðtÞ ¼ ðr
j ðtÞ; h



j ðtÞ; z
j ðtÞÞ associated to the

transport first-order differential operator
@t þ edexe�2
k Ziðez �rJ l/Þ � $? þ v
lj@z;
then, for j ¼ 1; . . . ;N , Eq. (11) can be rewritten as
d
dt
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j ð0Þ ¼ v
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j ; ð23Þ
where
d
dt

r
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j 6 Dz=2gwhere Dr ¼ Lr=Nr ;Dh ¼ 2p=Nh and Dz ¼ Lz=Nz, are the spatial discretization param-

eters. We now seek an approximate solution ðv
h;j;/hÞ 2 ðC2 \B4;hðXÞÞ�
3
, for each value of the time variable and for

j ¼ 1; . . . ;N , where
B4;hðXÞ ¼ Sc
4;Drðfsigi¼0...Nr

; s00; s
0
1Þ � S

p
4;Dhðfsigi¼0...Nh

Þ � Sp
4;Dzðfsigi¼0...Nz

Þ

with
Sp
4;Dxðfsigi¼0...Nx

Þ ¼
sðxÞ 2 C2ð½x0; xNx �Þ; sj½xi ;xiþ1 �

2 P3; 8i 2 ½0;Nx � 1�;

D4sðxÞ ¼ 0; 8x 2 ðxi; xiþ1Þ; 8i 2 ½0;Nx � 1�;
sðkÞðx0Þ ¼ sðkÞðxNx Þ; k ¼ 0; . . . ;2; sðxiÞ ¼ si; 8i 2 ½0;Nx�:

8>><>>:
9>>=>>;
and
Sc
4;Dxðfsigi¼0...Nx

; s00; s
0
1Þ ¼

sðxÞ 2 C2ð½x0; xNx �Þ; sj½xi ;xiþ1 �
2 P3; 8i 2 ½0;Nx � 1�;

sðxÞ ¼ arg min
f2C2

f –0

R xNx
x0
jD2f j2

� �
;

s0ðx0Þ ¼ s00; s0ðxNx Þ ¼ s01; sðxiÞ ¼ si; 8i 2 ½1;Nx � 1�:

8>>>><>>>>:

9>>>>=>>>>;:
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Therefore a three-dimensional cubic-spline sf which interpolates f at the points frir ; hih ; zizgir¼0...Nr ;ih¼0...Nh ;iz¼0...Nz
with boundary

conditions can be expanded as follows:
sf ðr; h; zÞ ¼
XNrþ1

ir¼�1

XNhþ1

ih¼�1

XNzþ1

iz¼�1

cir ih iz ðf ÞB
4ðr=Dr � irÞB4ðh=Dh� ihÞB4ðz=Dz� izÞ;
where the coefficient set fcir ih iz ðf Þgir¼�1...Nrþ1;ih¼�1...Nhþ1;iz¼�1...Nzþ1 solve a linear system determined by interpolation constraints
and boundary conditions, and where B4 ¼ B � B � B � B with BðxÞ ¼ 1 if x 2 ½�1=2;1=2� and zero elsewhere. After space discret-
ization the ordinary differential system (23) and (24) becomes
d
dt

v
h;jðt; r
h;jðtÞÞ ¼ ZiedJ hEhkðt; r
h;jðtÞÞ; v
h;jð0Þ ¼ v
0
h;j ;

d
dt

r
h;jðtÞ ¼ Fhðt; r
h;jðtÞ;J h/hðtÞ; v
h;jðtÞÞ;
ð25Þ
where r
h;jðtÞ is an approximation of the exact characteristic curve r
j ðtÞ;J
h is a numerical approximation (Eq. (34)) of the

gyroaverage operator J (Eq. (4)), and Fh is an approximation of the vector field F. Let be Dt ¼ T=NT the time discretization
parameter, thus the ordinary differential equations (25) are approximated in time by the following second-order backward
Runge–Kutta method. For all n 2 ½0;NT � 1�; j 2 ½0;N �;k ¼ ðrir ; hih; ziz Þ 2 R ¼ ½0;Nr � � ½0;Nh� � ½0;Nz� we imposed that

Step 1:
v
nþ1=2
h;j r
nþ1=2

h;j

� �
¼ v
n

h;j r
n
h;j

� �
þ Zied

Dt
2
J hEn

hk r
n
h;j

� �
;

r
nþ1=2
h;j ¼ r
n

h;j þ
Dt
2

Fn
h r
n

h;j ;J h/n
h;v


n
h;j

� �
;

ð26Þ
where r
nþ1=2
h;j ¼ rk 2 Mh, and

Step 2:
v
nþ1
h;j r
nþ1

h;j

� �
¼ v
n

h;j r
n
h;j

� �
þ ZiedDtJ hEnþ1=2

hk r
nþ1=2
h;j

� �
;

r
nþ1
h;j ¼ r
n

h;j þ DtFnþ1=2
h r
nþ1=2

h;j ;J h/nþ1=2
h ;v
nþ1=2

h;j

� �
;

ð27Þ
where r
nþ1
h;j ¼ rk 2Mh.

If we set r
n
h;j ¼ rk � d
n

h;j in the recurrence equation (26) we are leaded to solve the fixed-point equation
d
n
h;j ¼

Dt
2

Fn
h rk � d
n

h;j ;J h/n
h;v


n
h;j

� �
: ð28Þ
If we set r
n
h;j ¼ rk � 2d
n

h;j in the recurrence equation (27) and make the approximation r
nþ1=2
h;j ¼ r
n

h;j þ rk

� �
=2, still valid at

second order in time, we are leaded to solve the fixed-point equation
d
n
h;j ¼

Dt
2

Fnþ1=2
h rk � d
n

h;j ;J h/nþ1=2
h ;v
nþ1=2

h;j

� �
: ð29Þ
Finally (28) and (29) are fixed-point problems of the form
dk ¼
Dt
2

Fh rk � dk;J h/h;v
h;j
� �

: ð30Þ
The fixed-point problem (30) can be solved iteratively by a Newton algorithm. If we define the vector-valued function
RðdkÞ ¼ dk � Dt

2 Fh rk � dk;J h/h;v
h;j
� �

a Newton iterate is given by
d‘þ1
k ¼ d‘

k � J�1
R ðd

‘

kÞRðd
‘

kÞ; ð31Þ
where JR is the Jacobian matrix of R. Even if this algorithm gives accurate results, this method required interpolation of the
fields ð/h;v
h;jÞ and its derivatives at arbitrary points of space. A less expensive solution is to Taylor-expand the iteration
scheme (31) in time. Using the following second-order Taylor expansion of the inverse of the Jacobian matrix JR,
J�1
R ðrkÞ ¼ I þ Dt

2
JFh

rk � dk;J h/h; v
h;j
� �� ��1

¼ I � Dt
2

JFh
rk � dk;J h/h;v
h;j
� �

þOðDt2Þ;
in Eq. (31) we get
d‘þ1
k ¼ Dt

2
Fh rk � d‘

k;J h/h; v
h;j
� �

þ Dt
2

JFh
rk � d‘

k;J h/h;v
h;j
� �

d‘

k �
Dt
2

Fh rk � d‘

k;J h/h; v
h;j
� �� �

þOðDt2Þ:
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If we set the initial value d0
k to zero, then we get the simpler scheme
dH

k ¼
Dt
2

Fh rk;J h/h; v
h;j
� �

� Dt2

4
JFh

rk;J h/h;v
h;j
� �

Fh rk;J h/h;v
h;j
� �

þOðDt2Þ; ð32Þ
which has the advantage to require the evaluation of Fh and its first derivatives only at the mesh nodes. If the we take d0
k in

the Newton algorithm (31) and if it converges in one iteration, then it is equivalent to the method (32). Let us precise that we
make a local two-dimensional Cartesian coordinates transform in the transversal direction to compute the characteristic ori-
gin. It now remains to solve the quasineutrality equation (12) and the gyroaverage operator (4) which are performed by
spectral Fourier expansion in periodic directions and finite differences in the radial direction. If /mnðrÞ denotes the
poloidal–toroidal mode ðm;nÞ the Fourier transformed quasineutrality equation (12) becomes
� f
rni0ðrÞ

@rðrni0ðrÞ@r/mnÞ þ f
m2

r2 þ
eds
Ti0
ð1� kdm;0dn;0Þ

� �
/mn ¼ qmn ¼

1
ni0

XN
j¼1

AjððJ vþj Þmn � ðJ v�j ÞmnÞ � 1 ð33Þ
with f ¼ ede2
xe�2

k Zi. If we require that the electric field is uniquely defined and finite on the axis rmin ¼ 0, then the boundary
conditions for the electrical potential must satisfied @r/0njrmin¼0

¼ 0; 8n and /mnjrmin¼0
¼ 0; 8m–0; 8n. If rmin–0 we impose

that /mnjrmin¼0
¼ 0; 8ðm;nÞ. On the outer boundary the plasma is considered as a conductor, which means that there is no tan-

gential electric field and thus /mnjrmax¼0
¼ 0; 8ðm;nÞ–0. In addition we impose /00jrmax¼0

¼ 0. Using second-order finite differ-

ences Eq. (33) is recast in the ðNr � 1Þ � ðNr � 1Þ tridiagonal linear system
-aþ a1 bþ1
b�2 a2 bþ2 0

. .
. . .

. . .
.

0 b�Nr�2 aNr�2 bþNr�2

b�Nr�1 aNr�1

0BBBBBBB@

1CCCCCCCA

/mn;1

/mn;2

..

.

/mn;Nr�2

/mn;Nr�1

0BBBBBBB@

1CCCCCCCA ¼
qmn;1

qmn;2

..

.

qmn;Nr�2

qmn;Nr�1

0BBBBBBB@

1CCCCCCCA;
where
ai ¼ f
2

Dr2 þ
m2

r2
i

� �
þ eds

Ti0
ð1� kdm;0dn;0Þ;

b
i ¼ �
f

Dr2 

f

2Dr
1
ri
þ 1

ni0ðriÞ
dni0

dr
ðriÞ

� �
;

a ¼ � f
Dr2 þ

f
2Dr

1
r1
þ 1

ni0ðr1Þ
dni0

dr
ðr1Þ

� �

with - ¼ 1 if rmin ¼ 0 and - ¼ 0 if rmin–0. Let us note that in Eq. (33) the gyroaverage operator J (Eq. (4)) is replaced by its
numerical approximation J h. It remains now to compute J h. In Fourier space the gyroaverage transform (4) becomes
�q2

4
@2

r h/mni þ 1� q2

4
m2

r2

� �
h/mni ¼ /mn; ð34Þ
where h/mni denotes the gyroaveraged potential poloidal–toroidal mode ðm;nÞ. Using a finite differences scheme and apply-
ing the same boundary conditions used for the quasineutrality equation, Eq. (34) leads to solve the tridiagonal linear system
-.þ c1 .
. c2 . 0

. .
. . .

. . .
.

0 . cNr�2 .
. cNr�1

0BBBBBBB@

1CCCCCCCA

h/mn;1i
h/mn;2i

..

.

h/mn;Nr�2i
h/mn;Nr�1i

0BBBBBBB@

1CCCCCCCA ¼
/mn;1

/mn;2

..

.

/mn;Nr�2

/mn;Nr�1

0BBBBBBB@

1CCCCCCCA;
where
ci ¼ 1þ q2

4
2

Dr2 þ
m2

r2
i

� �
; and . ¼ � q2

4Dr2 :
Every tridiagonal linear system is solved by a LU factorization method.

4.2. Numerical approximation of the quasilinear system

This section is devoted to the numerical approximation of the system of Eqs. (19)–(22). To this aim we use the
Runge–Kutta Discontinuous Galerkin method [12]. We first depict the method for the transport equations (19) and (20).
Let be X the domain of computation and Mh a partition of X of element K such that [K2Mh

K ¼ X;
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K \ Q ¼ ;; K;Q 2Mh; K–Q . We set h ¼ maxK2Mh
hK where hK is the exterior diameter of a finite element K. The boundary of

K is denoted by @K;nK is the outward unit normal to @K , and f ð�Þ ¼ ð�Þ2=2. Let us introduce the notations
V
jm ¼ ðReV
jm;ImV
jmÞ

T ¼ ðV
1
jm ;V


2
jm Þ

T ; ca ¼ ð�1Þa, and b ¼modða;2Þ þ 1. The first step of the method is to write Eqs. (19)–
(22) in a variational (weak) form on any element K of the partitionMh, i.e. we multiply (19)–(22) with a regular test-function
and we integrate over the element K using a Green formula to make appear a boundary integral on the edge @K . We now seek
an approximate solution ðv
h;j0;ReV
h;jm; ImV
h;jm;/h;0;ReUh;m;ImUh;mÞ whose restriction to the element K of the partitionMh

of X belongs, for each value of the time variable, to the finite-dimensional local space PðKÞ, typically a space of polynomials.
We then set
PhðXÞ ¼ fw jwjK 2 PðKÞ; 8K 2Mhg:
Therefore we determine the approximate solution ðv
h;j0;ReV
h;jm;ImV
h;jm;/h;0;ReUh;m;ImUh;mÞjK 2 �
9PðKÞ for t > 0, on each

element K of Mh by imposing that, for all uh 2 PhðXÞ, for all j ¼ 1; . . . ;N , for a 2 f1;2g,
@t

Z
K

dKv
h;j0uh �
1
2

Z
K

dK v
h;j0
� �2

@zuh þ
Z
@K

dChfnK;ziðv
h;j0Þuh þ Zied

Z
K

dKuhEh;0z

� edexe�2
k Zi

X
m>0

m
Z

K
dKV
h;jm �Uh;m@r

uh

2r

� �
�
Z
@K

dChV
h;jm �Uh;mnK;ri
uh

2r

� �
�
X
m>0

1
4

Z
K

dKjV
h;jmj
2
@zuh �

1
2

Z
@K

dC hfnK;ziðReV
h;jmÞ þ hfnK;ziðImV
h;jmÞ
� �

uh

� �
¼ 0 ð35Þ
with
 Z
K

dKuhEh;0z ¼ �
Z

K
dK/h;0@zuh þ

Z
@K

dCh/h;0nK;ziuh ð36Þ
and
@t

Z
K

dKV
a
h;jmuh þ edexe�2

k Zi

Z
K

dK
cam

r
Eh;0rV


b
h;jm � @rv
h;j0U

b
h;m

� �
uh �

Z
K

dKv
h;j0V
a
h;jm@zuh

þ
Z
@K

dChv
h;j0V
a
h;jmnK;ziuh þ Zied

Z
K

dKEa
h;mzuh

¼ 0; ð37Þ
where
 Z
K

dKuhEh;0r ¼ �
Z

K
dK/h;0@ruh þ

Z
@K

dCh/h;0nK;riu; ð38ÞZ
K

dK@rv
h;j0uh ¼ �
Z

K
dKv
h;j0@ruh þ

Z
@K

dChv
h;j0nK;riuh; ð39ÞZ
K

dKuhEa
h;mz ¼ �

Z
K

dKUa
h;m@zuh þ

Z
@K

dChUa
h;mnK;ziuh: ð40Þ
In Eqs. (35)–(40) we have replaced the flux terms at the boundary of the cell K, by numerical fluxes (bracket notation) be-
cause the terms arising from the boundary of the cell K are not well defined or have no sense since all unknowns are discon-
tinuous (by construction of the space of approximation) on the boundary @K of the element K. Now it remains to define these
numerical fluxes. For two adjacent cells K‘ and Kr (r denotes the right cell and ‘ the left one) of Mh and a point P of their
common boundary at which the vector nKr ;r 2 fr;‘g are defined, we set ur

h ðPÞ ¼ lim�!0uhðP � �nKr Þ and call these values
the traces of uh from the interior of Kr. Therefore the numerical flux at P is a function of the left and right traces of the un-
knowns considered. For example
hfnK‘;ziðv
h;j0ÞðPÞ ¼ hfnK‘;ziðv

;‘
h;j0ðPÞ;v


;r
h;j0ðPÞÞ:
Besides the numerical flux must be consistent with the nonlinearity fnK‘ ;z, which means that we should have
hfnK‘ ;ziðv ;vÞ ¼ f ðvÞnK‘ ;z. In order to give monotone scheme in case of piecewise-constant approximation the numerical flux
must be conservative, i.e.
hfnK‘;ziðv

;‘
h;j0ðPÞ;v


;r
h;j0ðPÞÞ þ hfnKr ;ziðv
;rh;j0ðPÞ;v


;‘
h;j0ðPÞÞ ¼ 0
and the mapping v#hfnK‘ ;ziðv ; �Þ must be non-decreasing. There exist several examples of numerical fluxes satisfying the
above requirements: the Godunov flux, the Engquist–Osher flux, the Lax–Friedrichs flux (see [12]). For the numerical fluxes
hV
h;jm �Uh;mnK;ri; hfnK;ziðReV
h;jmÞ, and hfnK;ziðImV
h;jmÞ we choose the average flux. For the fluxes h/h;0nK;zi; h/h;0nK;ri; hv
h;j0nK;ri
and hUa

h;mnK;zi we can choose the average, left or right flux. Finally for the numerical flux hv
h;j0V
a
h;jmnK;zi (with discontinuous

advection coefficient) we can choose two different upwind fluxes
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v
h;j0V
a
h;jmnK;z

D E
¼ v
h;j0nK;z

D E
M

V
a;‘
h;jm þ v
h;j0nK;z

D E
O

V
a;r
h;jm ;
where

	 hv
h;j0nK;ziM ¼ ðv
;‘h;j0Þ
MjnK;zj; hv
h;j0nK;ziO ¼ ðv
;rh;j0Þ

OjnK;zj
or

	 hv
h;j0nK;zi ¼ jnK;zjðð1� gÞv
;‘h;j0 þ gv
;rh;j0Þ; g 2 ½0;1�
with the notation zM ¼maxðz;0Þ and zO ¼minðz;0Þ.
Let us introduce Xh, a generic unknown such that
Xh 2 K ¼ v
h;j0
n o

j2½1;N �
; V
h;jm
n o

j2½1;N �;m>0

� �
:

Therefore, after the space-discretization step, for all K 2Mh and Xh 2 K, we get the ordinary differential equations
M
d
dt

XhjK
¼ LK;Xh

v
h;j0jK0
;V
h;jmjK0

;/h;0jK0
;Uh;mjK0

j K 0 \ K 2 @K
� �� �

:

In the general case, the local mass matrix M of low order (equal to the dimension of the local space PðKÞ) is easily invertible.
If we choose orthogonal polynomials the matrix M is diagonal. Here we take Legendre polynomials as L2-orthogonal basis
function. Our code can run with Legendre polynomials of any degree, but for the numerical results exposed in the next sec-
tion we choose polynoms of degree two. Moreover we take a rectangular element K ¼ Kpq ¼ fðr; zÞjjrp � rj 6
Dr=2; jzq � zj 6 Dz=2g, where Dr and Dz are the space-discretization parameters.

Therefore we have to solve the ordinary differential equations
d
dt

Xh ¼ Lh;Xh
v
h;j0;V



h;jm;/h;0;Uh;m

� �
; 8Xh 2 K: ð41Þ
In order to solve ODE’s (41) we can use Runge–Kutta methods [24]. For numerical stability considerations we have to choose
kþ 1 stage Runge–Kutta method of order kþ 1 for DG discretizations using polynomials of degree k if we do not want our
CFL number to be too small. Since we take polynomial of degree two we choose the third-order strong stability-preserving
Runge–Kutta method [24]:
Xhðt1Þ ¼ XhðtnÞ þ DtLh;Xh
v
h;j0ðtnÞ;V
h;jmðtnÞ;/h;0ðtnÞ;Uh;mðtnÞ
� �

;

Xhðt2Þ ¼
3
4

XhðtnÞ þ 1
4

Xhðt1Þ þ
1
4

DtLh;Xh
v
h;j0ðt1Þ;V
h;jmðt1Þ;/h;0;ðt1Þ;Uh;mðt1Þ
� �

;

Xhðtnþ1Þ ¼ 1
3

XhðtnÞ þ 2
3

Xhðt2Þ þ
2
3

DtLh;Xh
v
h;j0ðt2Þ;V
h;jmðt2Þ;/h;0;ðt2Þ;Uh;mðt2Þ
� �

;

8Xh 2 K with tn ¼ nDT;Dt ¼ T=NT , and t1 and t2 times between tn and tnþ1.
For the discretization of the initial condition we take ðv
h;j0ðt ¼ 0Þ;V
h;jmðt ¼ 0ÞÞ on the cell K to be the L2-projection of

ðv
j0ðt ¼ 0Þ;V
jmðt ¼ 0ÞÞ on �6PðKÞ.
It now remains to solve the quasineutrality equations (21) and (22). If we set k ¼ 0, Eqs. (21) and (22) take the general

form
@rrþ m/ ¼ q on X; ð42Þ
l�1r ¼ �@r/ on X; ð43Þ
/jr¼rmin

¼ 0 or @r/jr¼rmin
¼ 0; and /jr¼rmax

¼ 0; 8z 2 Xz; ð44Þ

/ðr; zÞ ¼ /ðr; zþ LzÞ; 8r 2 Xr ; ð45Þ
where X ¼ Xr �Xz ¼ ½rmin; rmax� � ½0; Lz�. The term q=r stands for the right hand side of (21) or (22), lðrÞ ¼ ede�2
k e2

xZirni0ðrÞ,
and we define mðrÞ ¼ edsrni0ðrÞ=Ti0ðrÞ for Eq. (21) or mðrÞ ¼ rede2

xe�2
k Zim2=r2 þ edsrni0ðrÞ=Ti0ðrÞ for Eq. (22). Using Green for-

mula we can rewrite the problem (42)–(45) in a variational (weak) form suitable for its numerical approximation which con-
sists in finding rh 2 PhðXÞ and /h 2 PhðXÞ such that for all uh;wh 2 PhðXÞ, and for all K 2 Mh
Z

K
l�1rhuhdK ¼

Z
K

/h@ruhdK �
Z
@K

b/KuhnK‘ ;rdC; ð46ÞZ
K
rh@rwhdK ¼

Z
@K

brK nK‘ ;rwhdC þ
Z

K
m/hwhdK �

Z
K
qhwhdK; ð47Þ
where rh and /h are approximations of r ¼ �l@r/ and / respectively, and qh stands for the approximation of q in PhðXÞ. The
numerical fluxes brK and b/K are approximations of r ¼ �l@r/ and / respectively, on the boundary of the cell K. If we set n
the outward unit normal to @X; E�h the set of interior edges ofMh; E@h the set of boundary edges ofMh and if we use the nota-
tions suht ¼ ur

hnK‘ ;r þu‘
hnKr ;r and fuhg ¼ 1

2 ður
h þu‘

hÞ, then for u;w 2
Q

K2Mh
L2ð@KÞ we have
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X
K2Mh

Z
@K

wK‘uK‘nK‘ ;rdC ¼
Z
E�h

ðswtfug þ sutfwgÞdCþ
Z
E@h

wunrdC: ð48Þ
If we take uh ¼ rh in Eq. (46), wh ¼ /h in Eq. (47), summing over the cell K and using Eq. (48) we obtain
Rh þ
Z

X
l�1jrhj2dK þ

Z
X
mj/hj

2dK ¼
Z

X
qh/hdK; ð49Þ
where
Rh ¼
Z
E�h

fbrh � rhgs/htþ fb/h � /hgsrht
� �

dCþ
Z
E@

h

/hðbrh � rhÞ þ b/hrh

� �
nrdC: ð50Þ
Now let us choose the numerical fluxes as follows
brh ¼ frhg þ a11s/htþ a12srht; b/h ¼ f/hg � a11s/htþ a22srht on E�h; ð51Þbrh ¼ r‘
h þ a11/

‘
hnr; b/h ¼ 0; on E@h \ CD; ð52Þbrh ¼ 0; b/h ¼ /‘

h þ a22r‘
hnr; on E@h \ CN; ð53Þ
where a11 > 0;a22 P 0;a12 2 R, and CD (resp. CN) denotes the boundary edges subset of E@h where Dirichlet conditions (resp.
Neumann) are applied. If we plug the numerical fluxes (51)–(53) into Eq. (50) we then get
Rh ¼
Z
E�h

ða11s/ht
2 þ a22srht

2ÞdCþ
Z
E@h\CD

a11j/hj
2dCþ

Z
E@h\CN

a22jrhj2dC P 0:
If we set qh ¼ 0 in Eq. (49), then we get s/htjE�
h

¼ 0;/h jCD
¼ 0;rh ¼ 0 and /h ¼ 0 since l; m;a11 > 0 and a22 P 0. Therefore

/h ¼ 0 on X and the approximate solution /h is well defined. Now that the method supplies a unique approximate solution,
let us compute it. If we take Eq. (46), sum over the cell K, by using the expression (48) we get
aðrh;uhÞ � bð/h;uhÞ ¼ 0; 8uh 2 PhðXÞ; ð54Þ
where the bilinear forms að�; �Þ and bð�; �Þ are defined by
aðu; vÞ ¼
Z

X
l�1uvdK þ a22

Z
E�h

sutsvtdCþ
Z
E@

h
\CN

ðunrÞðvnrÞ
 !

;

bðw; uÞ ¼
Z

X
@ruwdK þ

Z
E�h

sutða12swt� fwgÞdC�
Z
E@

h
\CN

unrw:
Using integration by part we get
�
Z

K
rh@ruhdK ¼ �

Z
@K

rhnK‘ ;ruhdCþ
Z

K
@rrhuhdK: ð55Þ
If we add Eq. (47) to Eq. (55), sum over all cell K, and use Eq. (48) then, we get
bðwh;rhÞ þ cðwh;/hÞ ¼ FðwhÞ; 8wh 2 PhðXÞ; ð56Þ
where the bilinear form cð�; �Þ and the linear form Fð�Þ are defined by
cðw;pÞ ¼ a11

Z
E�h

swtsptdCþ a11

Z
E@h

pwdCþ
Z

X
mpwdK; FðwÞ ¼

Z
X

wqhdK:
The variational formulation (54)–(56), leads to the matrix formulation
NT
hARh �UT

hBWh ¼ 0; WT
hBRh �WT

hCUh ¼ WT
hFh; 8Wh;Nh;
which is equivalent to solve the linear system
Rh ¼ A�1BTUh; ðBA�1BT þ CÞUh ¼ Fh: ð57Þ
We can solve the linear systems (57) by direct (LU decomposition for example) or iterative methods (conjugate gradient for
example) of linear algebra. Let us note that if a22 ¼ 0, then the matrix A is diagonal by block, and therefore it is easier to
invert.

Remark 1. Up to this point we have assumed that all integrals involved in the definition of the numerical schemes are
evaluated analytically. In fact all integrals can be reduced to the computation
Z 1

�1
f ðnÞdn: ð58Þ
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To evaluate integral (58) we use numerical integration or quadrature rules whose the concept is the approximation of the
integral by finite summation of the form
Z 1

�1
f ðnÞdn 

XQ�1

i¼0

xif ðniÞ;
where xi are specified constants or weights and ni represent an abscissa of Q distinct points in the interval �1 6 ni 6 1. There
are many types of numerical integration [30], here we choose Gaussian quadrature rules. In order to keep high-order accu-
racy, the quadrature rules should be exact for polynomial of degree 2kþ 1 on @K and 2k on K where k is the degree of poly-
nomial approximation [12].
5. Numerical results

5.1. Construction of a gyro-water-bag equilibrium

The first problem is to determine physically relevant gyro-water-bag equilibrium which will be use to initialize the
numerical scheme depicted previously. In order to describe ITG modes, we choose to construct radial profiles in terms of
temperature and density profiles only. The continuous equilibrium distribution function is assumed as
feqðr;vkÞ ¼
ni0ðrÞffiffiffiffiffiffiffiffiffiffiffiffi
Ti0ðrÞ

p F vkffiffiffiffiffiffiffiffiffiffiffiffi
Ti0ðrÞ

p !
; ð59Þ
where ni0ðrÞ and Ti0ðrÞ are the normalized radial profiles of ion density and temperature. The function F is a normalized even
function, thus for a local Maxwellian distribution, we get FðxÞ ¼ expð�x2=2Þ=

ffiffiffiffiffiffiffi
2p
p

. The first stage, will consist in constructing
the gyro-water-bag equilibrium function at r ¼ r0, and then extended it for all r 2 ½rmin; rmax�. To this aim, as in [35], we use
the method of equivalence between the radial derivatives of the moments of the stepwise gyro-water-bag function and the
radial derivatives of the corresponding continuous function. If we define, for ‘ ¼ 0;2; . . . ;2ðN � 1Þ, the r-derivative of the ‘-
moment of feq as
M‘
rðfeqÞ ¼

Z
R

dvk@rfeqv‘
k

and the r-derivative of the ‘-moment of the gyro-water-bag as
M‘
rðGWBÞ ¼

XN
j

2Ajv�‘j @rv�j ;
then, using integration by parts, the equality M‘
rðfeqÞ ¼ M‘

rðGWBÞ at the point r ¼ r0 implies
XN
j

ajðr0ÞXH

v�
j
ðr0Þðv�j ðr0ÞÞ‘ ¼ XH

ni0
ðr0Þ þ

‘

2
XH

Ti0
ðr0Þ

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ti0ðr0Þ

p� �‘
M‘ðFÞ; ð60Þ
where M‘ðFÞ is the ‘th order moment of the function F ;aj ¼ 2v�jAj=ni0;X
H

v�
j

measuring the local radial gradient of the bag
v�j ;X

H

ni0
and XH

Ti0
are the diamagnetic frequencies defined by
XH

v�
j
¼ khTi0

qiB

d ln v�j
dr

¼ khTi0

qiB
jv�

j

and
XH

ni0
¼ khTi0

qiB
d ln ni0

dr
¼ khTi0

qiB
jni0

; XH

Ti0
¼ khTi0

qiB
d ln Ti0

dr
¼ khTi0

qiB
jTi0

:

We now introduce the unknown coefficients bj and cj, for j ¼ 1; . . . ;N , such that the constraint
ajXv�
j
¼ cjX

H

ni0
þ 1

2
bjX

H

Ti0
ð61Þ
is satisfied at the point r ¼ r0. If we substitute (61) into (60) then, the unknown gyro-water-bag parameters ðaj; bj; cjÞ must
solve the following linear system at the point r ¼ r0,
X

16j6N
ajðr0Þðv�j ðr0ÞÞ‘ ¼ ð‘þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ti0ðr0Þ

p� �‘
M‘ðFÞ; ð62Þ

X
16j6N

bjðr0Þðv�j ðr0ÞÞ‘ ¼ ‘
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ti0ðr0Þ

p� �‘
M‘ðFÞ; ð63Þ

X
16j6N

cjðr0Þðv�j ðr0ÞÞ‘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ti0ðr0Þ

p� �‘
M‘ðFÞ: ð64Þ
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Nevertheless in Eqs. (62)–(64) the matrix has the form of a Vandermonde system which becomes ill-conditioned for a great
number of bags N . A more convenient solution can be found for a large number of bag. Let us consider a regular sampling of
the vk-axis, i.e. v�j ðr0Þ ¼ ðj� 1

2ÞDv , with Dv ¼ 2vmax=ð2N � 1Þ and set Fj ¼ feqðr0;v�j ðr0Þ � Dv
2 Þ. If we required that Eqs. (62)–(64)

are satisfied at second order in Dv , then, using a trapeze quadrature rule to compute M‘ðFÞ, we get the solution
ajðr0Þ ¼ 2Aj

v�j ðr0Þ
ni0ðr0Þ

¼ 2ðFj � Fjþ1Þ
v�j ðr0Þ
ni0ðr0Þ

; cjðr0Þ ¼ Dv Fj þ Fjþ1

ni0ðr0Þ
; bjðr0Þ ¼ ajðr0Þ � cjðr0Þ:
After defining a local equilibrium at r ¼ r0 by the method of moments equivalence, we extend the equilibrium in the radial
direction by following the level lines of the continuous equilibrium (59) where the reference (boundary) level values are gi-
ven by the equilibrium ones defined at r ¼ r0. Therefore gyro-water-bag parameters fAjgj2½1;N �, and the initial condition for
the quasilinear (QL) and nonlinear (NL) problem, for j ¼ 1; . . . ;N , are given by
Aj ¼ Fj � Fjþ1;

v�j ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Ti0ðrÞ

p
F�1 fj

ffiffiffiffiffiffiffiffiffiffiffiffi
Ti0ðrÞ

p
ni0ðrÞ

 !
; ð65Þ

v
j0ð0; r; zÞ ¼ 
v�j ðrÞ ðQLÞ;
v
j ð0; r; h; zÞ ¼ 
v�j ðrÞ ðNLÞ ð66Þ
with fj ¼ feqðr0;v�j ðr0ÞÞ. If we now differentiate (65) with respect to r, with F a normalized Maxwellian, we get
jv�
j
ðrÞ ¼ 1

2
jTi0
ðrÞ 1� Ti0ðrÞ

v�2j ðrÞ

 !
þ Ti0ðrÞ

v�2j ðrÞ
jni0
ðrÞ;
which says that
jv�
j
� O jT ;jn;

1
v�2j

 !

and thus numerical problems could appear. In fact, if we keep a uniform vk-discretization to determine the gyro-water-bag
equilibrium and if we want to use a large number of bag we see that jv�1

can explose as the first bag tends to zero. This phe-
nomenon can lead to the bag crossing. In the same way, let us suppose that the number of bag remains fixed and the tem-
perature gradient (resp. the density gradient) is homogeneous and fixed. If the density (resp. the temperature) varies to
much in the radial direction then the equilibrium bags can cross each other.

The radial profiles of the ion density and temperature are fixed in time and are deduced by integration of their gradient
profiles
jni0
ðrÞ ¼ 1

ni0ðrÞ
dni0ðrÞ

dr
¼ �j�ni0

cosh�2 r � r0

Drni0

� �
;

jTi0
ðrÞ ¼ 1

Ti0ðrÞ
dTi0ðrÞ

dr
¼ �j�Ti0

cosh�2 r � r0

DrTi0

� �
;

where r0;j�ni0
;j�Ti0

;Drni0 and DrTi0 are free parameters. We next define the parameter gðrÞ ¼ dðln Ti0Þ=dðln ni0Þ which deter-
mines locally if an ITG instability can develop ðg P 2Þ or not ðg < 2Þ. The initial perturbation bag is chosen as
V
jmð0; r; zÞ ¼ v
j0ð0; r; zÞpðrÞdpðzÞ ðQLÞ; dv
j ð0; r; h; zÞ ¼ v
j ð0; r; h; zÞpðrÞdpðh; zÞ ðNLÞ
where pðrÞ is an even exponential function centered in r0 such that limr!rmin
pðrÞ ¼ 0 and limr!rmax pðrÞ ¼ 0. The perturbation

dp is initialized with a single mode or with a bath of modes
dpðzÞ ¼
X

n

�n cos
2pn

Lz
zþun

� �
ðQLÞ;

dpðh; zÞ ¼
X
nm

�nm cos
2pn

Lz
zþmhþumn

� �
ðNLÞ;
where � and u represent respectively a random amplitude and a random phase for the mode considered.

5.2. ITG instability and gyrokinetic turbulence in a cylinder

The ITG instabilities correspond to small scale instabilities which start in the region where local temperature gradient
exceeds local density gradient by some amount. Due to the existence of energy invariants in the system, the perturbated
modes can not grow unbounded and after a linear phase of exponential increase, a local quasilinear saturation takes place
leading to flattening of the local temperature profile. In the nonlinear phase, the existence of broad wave spectrum involving
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mode coupling phenomena and nonlinear resonant wave–particle interaction leads to a state of developed plasma turbu-
lence and to the appearance of anomalous heat transport.

Fig. 1 illustrates some examples of initial radial profiles that we consider for ion density, temperature and g-parameter at
equilibrium. In order to compare numerical results to analytical ones and thus to validate the numerical approximation, we
consider the case where in Eqs. (21), (22) and (12) there is neither polarization drift, nor gyroaverage operator, i.e. the sec-
ond-order differential operator in the transverse direction is removed. In that case a linear analysis can be performed (see
[35,36]), resulting in algebraic dispersion relation, local in the radial direction, which can be then rigorously solved, giving
rise to analytical growth rate for the ITG instability. In this test case we set ex ¼ ek ¼ ed ¼ 10�3 and the radial domain is taken
such as r 2 ½1;5�. As Vlasov codes, the advantage of our numerical approximation is that the perturbation can be initialized
with a single mode ðm;nÞ. Therefore we select only one perturbative toroidal–poloidal mode such that ðm;nÞ ¼ ð20;1Þ. The
results are summarized in Table 1.

In spite of good agreement between numerical and theoretical linear growth rate values (Table 1), the QL and NL models
are not well posed without polarization drift or gyroaverage operator and then they have no sense in the nonlinear regime
because there is no differential operator in the transverse direction or physical mechanism which prevent the excitation of
small scales without damping. In other words all the modes in the limit k? ! 1 are unstables which means that the solution
blows up in a finite time. Therefore the next step is to compare the linear growth rate of ITG instability given by the quasi-
linear model (19)–(22) – referred to QL – solved by a Runge–Kutta discontinuous Galerkin method and the nonlinear model
(11) and (12) – referred to NL – solved by a Runge–Kutta semi-Lagrangian method. Even if the QL and the NL models are
different they should have the same behaviour (more precisely the same growth rate for the ITG instability) in the linear
regime. For this test case we choose a radial domain such as r 2 ½1;9�, and z; h 2 ½0;2p�. The dimensionless parameters
ex; ek and ed are set to 10�3 and the number of bag is fixed to N ¼ 6. The results are summarized in Table 2.

From Table 2 we observe that the QL and the NL models give the same ITG instability growth rate in the linear regime,
which participates to the validation of the numerical approximation.

We now want to compare the level of the turbulence between the QL and the NL models. To this purpose we consider two
test cases and show the time evolution of the electric energy and the turbulent heat flux. The discretization parameters of the
two benchmarks are summarized in Tables 3 and 4. For both test cases we take the following parameter values
s ¼ 1; ex ¼ ek ¼ ed ¼ 10�3;vmax ¼ 5; rmin ¼ 1; rmax ¼ 9; z; h 2 ½0;2p� and N ¼ 6.

Fig. 2 shows the evolution of the logarithm of L2-norm of the electrical potential at r ¼ r0 for the QL and NL models, while
Fig. 3 depicts the corresponding mean heat flux at r ¼ r0. If in the linear stage the QL and NL models give the same results in
term of growth rate, potential energy and mean heat flux, we observe that in the nonlinear regime their behaviour differ, as it
is expected. We notice that the level of the L2-norm of the electrical potential and the mean heat flux are always a little great-
er for the QL model that the NL one at the beginning of the nonlinear saturation phase. This remark can be explained by the
fact that in the QL model most of nonlinear coupling are removed and thus the saturation regime occurs with a time delay
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Fig. 1. Initial ion radial profiles: (a) density, (b) temperature, (c) g-parameter.

Table 1
Comparison of analytical and numerical growth rates in case of no polarization drift and no gyroaverage operator.

Case jn ¼ 1:5� 10�4 jn ¼ 1:5� 10�4 jn ¼ 1:5� 10�4 jn ¼ 1:5� 10�4

jT ¼ 1:5� 10�3 jT ¼ 1:5� 10�3 jT ¼ 7:5� 10�4 jT ¼ 6:45� 10�4

N ¼ 8; s ¼ 1 N ¼ 10; s ¼ 0:2 N ¼ 10; s ¼ 1 N ¼ 10; s ¼ 1
vmax ¼ 6 vmax ¼ 5 vmax ¼ 5 vmax ¼ 5

ctheory 0.80 1.80 0.22 0.097
cnumeric 0.85 1.83 0.22 0.095



Table 2
Comparison of QL and NL growth rates.

Case jn ¼ �0:02 jn ¼ �0:03 jn ¼ �0:04 jn ¼ �0:02
jT ¼ �0:1625 jT ¼ �0:24 jT ¼ �0:32 jT ¼ �0:40
ðm; nÞ ¼ ð6;3Þ ðm;nÞ ¼ ð6;3Þ ðm; nÞ ¼ ð6;3Þ ðm;nÞ ¼ ð6;3Þ

cQL 1.70 2.12 2.44 4.30
cNL 1.70 2.12 2.44 4.30

jn ¼ �0:01 jn ¼ �0:01 jn ¼ �0:009 jn ¼ �0:009
jT ¼ �0:08 jT ¼ �0:075 jT ¼ �0:069 jT ¼ �0:067
ðm; nÞ ¼ ð6;3Þ ðm;nÞ ¼ ð6;3Þ ðm; nÞ ¼ ð10;3Þ ðm;nÞ ¼ ð10;3Þ

cQL 0.74 0.56 0.65 0.568
cNL 0.74 0.56 0.65 0.568

Table 3
Discretization parameters for the QL model.

Dt Dr Dz Nr Nz ðm; nÞ

jn ¼ �0:009 4� 10�3 1:25� 10�1 9:80� 10�3 64 64 ð10;3Þ
jT ¼ �0:067

jn ¼ �0:01 4� 10�3 1:25� 10�1 9:80� 10�3 64 64 ð6;3Þ
jT ¼ �0:1

Table 4
Discretization parameters for the NL model.

Dt Dr Dz Dh Nr Nz Nh ðm; nÞ

jn ¼ �0:009 4� 10�3 6:30� 10�2 4:90� 10�2 2:45� 10�2 128 128 256 ð10;3Þ
jT ¼ �0:067

jn ¼ �0:01 7:85� 10�3 6:30� 10�2 9:80� 10�2 4:90� 10�2 128 64 128 ð6;3Þ
jT ¼ �0:1

Fig. 2. L2-norm of the electrical potential at r ¼ r0.
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and an additional amount of electrical energy. Even if in the nonlinear regime QL and NL solutions are different, they remain
qualitatively at the same level. Therefore the QL model constitutes a relative good approximation of the NL model even in the
nonlinear phase.

If one wants to validate the nonlinear regime then it is always a problem because exact solutions are mostly not known.
Nevertheless in our case, it is well known that the Vlasov equation conserves many physical and mathematical quantities
such that mass, kinetic entropy, total energy, every Lp-norm, and more generally any phase-space integral of bðf Þ where b



Fig. 3. Mean heat flux at r ¼ r0.
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is a regular function. Obviously this conservation properties are retrieved with the gyro-water-bag model by using the dis-
tribution function (7). As a result, the usual integral Casimir invariants of the Vlasov equation become
Z

bðf Þ2pXi

qi
drdvkdl ¼

X
lj

2pXi

qi
ðbðfljÞ � bðfljþ1ÞÞ

Z
vþlj � v�lj

� �
dr:
We next define the relative error Rel:Err:ðQÞ of the conserved quantity Q as
Rel:Err:ðQÞðtÞ ¼ QðtÞ � Qð0ÞQð0Þ :
These invariants constitute good criteria to evaluate the behaviour of the numerical method in nonlinear stage. Fig. 4 shows
the evolution of Rel:Err:ðkfkL1 Þ, while Fig. 5 represents Rel:Err:ðkfkL2 Þ. Finally Fig. 6 depicts the time evolution of
Rel:Err:ðf ln f Þ. For the QL model, in the case corresponding to jn ¼ �0:009 and jT ¼ �0:067 the relative error of the L2-norm,
L1-norm (or mass) and kinetic entropy is less than 10�12 and for the case where the radial gradients are jn ¼ �0:01 and
jT ¼ �0:1, their relative errors remain below 10�9. We notice that these conservations are better than those obtained for
the NL model in the nonlinear regime. These results can be explained by the fact that growing small scale poloidal structures
whose the size is smaller than the cell size are smoothed and then information is irreversibly lost resulting in deviation for
every conserved quantity. Let us notice that in the NL model all poloidal modes, bounded by the mesh discretization in h, can
participate to the nonlinear regime by coupling to each other, whereas in the QL model they are fixed a priori (m ¼ 10 or
m ¼ 6, in our case). Nevertheless even for the NL model the relative errors always stay less than 10�4.

The conservation of energy is most difficult to satisfy as in PIC codes [28] or Vlasov codes [25]. In term of energy conser-
vation the NL model behaves better than the QL one. In the light of the quasilinear analysis performed in [8], we know that
the total energy is conserved at second order in the perturbation, thus it explains why energy conservation is less good in the
case of the QL model. However this conservation is still correct even quite good since the relative error always remains below
3� 10�4 for jn ¼ �0:009=jT ¼ �0:067 and below 5� 10�3 for jn ¼ �0:01=jT ¼ �0:1 (see Fig. 7).
Fig. 4. Relative error on the L1-norm (or mass) of f.



Fig. 5. Relative error on the L2-norm of f.

Fig. 6. Relative error on the entropy of f.

Fig. 7. Relative error on the total energy.
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In magnetized plasma, if flow shear exists together with density–temperature (or pressure) gradient, a source of the
turbulence, the flow shear may suppress the turbulence driven by pressure gradient relaxation. These shear flows can be
self-generated, in which case the Reynolds stress tensor is their main driving term. There is an energy transfer from the
turbulent low-frequency electromagnetic (drift waves) fluctuations to these periodic zonal flow fluctuations via either local
(inverse energy cascade) or non-local interactions in Fourier space. The back reaction of self-generated shear flow, on



pressure-gradient-driven turbulence, is a key mechanism that governs the turbulent state and the transport, especially it can
lead to the formation of transport barriers. In fact many nonlinear simulations show a significant reduction of the transport
when zonal flows are present [42,33,29]. In a review of zonal flow phenomena [15], the authors show that poloidal velocity
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radial derivative. Fig. 8 indicates the presence of a poloidal velocity shear layer centered at r ¼ r0 ¼ 5. From Figs. 9 and 8 we
observe that the maximum of the temperature gradient, the mean sheared flow, and the curvature of zonal flows are at the
same location r ¼ r0. These results are in agreement with those obtained with the full-f gyrokinetic Vlasov code GYSELA
[25,41]. Moreover in Fig. 10 we see a sensible reduction of the turbulent heat flux at the location r ¼ r0. In agreements
with linear perturbative theory and other numerical simulations [41], this suggests that any strong temperature gradient
Fig. 11. (a) ðr; hÞ-slice at a given azimuthal position z0 of the contour v�1 , remembering that the contour v�1 ðt; r; h; zÞ belongs to a three-dimensional space;
(b) the electrical potential / at times t ¼ 9:42; t ¼ 18:84; t ¼ 37:70 and t ¼ 45:55 for jn ¼ �0:009 and jT ¼ �0:067.



3992 N. Besse, P. Bertrand / Journal of Computational Physics 228 (2009) 3973–3995
associated with a maximum of zonal flow curvature can survive, possibly leading to a transport barrier. The existence of a
thin poloidal velocity shear layer can also be observed on the ðr; hÞ-slice of the electrical potential at a given azimuthal
position z ¼ z0 in Fig. 11(b) at time t ¼ 45:55 and in Fig. 12(b) at times t ¼ 26:70 and t ¼ 39:26.

In Figs. 11 and 12 we see an example of what a half bag, for instance the v�1 contour, and the electric potential look like.
The linear phase is obviously observed at time t ¼ 9:42 in Fig. 11, and time t ¼ 4:71 in Fig. 12. We next notice the beginning
of the nonlinear phase at time t ¼ 18:84 in Fig. 11, and time t ¼ 9:42 in Fig. 12. Thence we are in the nonlinear regime, where
we observe zonal flows presence from the electrical potential and the development of the filamentation phenomenon from
Fig. 12. (a) ðr; hÞ-slice at a given azimuthal position z0 of the contour v�1 , remembering that the contour v�1 ðt; r; h; zÞ belongs to a three-dimensional space;
(b) the electrical potential / at times t ¼ 4:71; t ¼ 9:42; t ¼ 17:27; t ¼ 26:70 and t ¼ 39:26 for jn ¼ �0:01 and jT ¼ �0:1.
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the ðr; hÞ-slice of the contour v�1
1 at a given azimuthal position z0. The incompressible nature of the flow in the transverse

direction leads to this filamentation phenomenon, also observed in phase-space for Vlasov-type equation. It could lead to
numerical problems in long time simulations, because this phenomenon produces a growing of small scale poloidal struc-
tures. When these small scales become smaller than the space grid size, informations are lost and unknowns are smoothed
which corresponds to an addition of non physical and nonlinear diffusion operator like effects. Even if a refinement of the
mesh in the poloidal direction will improve the treatment of small scales, it will always be not sufficient as the filamentation
mechanism generates smaller and smaller scale structures as time goes on. Nevertheless, if we take into account finite Lar-
mor radius effects, it introduces a natural and physical filter or regularization mechanism which consists in an averaging
procedure in the transverse direction. Therefore the addition of gyroaverage operator (4) tends to limit the development
of small scales structures. As an example, Figs. 13–15 give an illustration of the effects of the gyroaverage operator. In
Fig. 13(a) we observe that the growth rate is a little bit smaller than one obtained without gyroaveraging, as it is well known
while in Fig. 13(b) the level of the turbulent heat flux and electrical potential energy keeps the same level. In Figs. 14 and 15
we notice that the transversal structures are a little bit more regularized, but actually it is not significant as the simulation
need to run enough far in time to observe the gyroaveraging effect and because we only take one adiabatic invariant l ¼ l0.

6. Perspectives

In this paper we have considered the water-bag weak solution of the Vlasov gyrokinetic equation, resulting in the birth of
the gyro-water-bag model. We have also derived a self-consistent quasilinear model from the nonlinear gyro-water-bag
model, to cross-check the linear regime of the ITG instability. Each model has been solved with a different numerical method
to state the reliability of the models and the associated numerical schemes. Not only the quasilinear model is in agreement
Fig. 13. Comparison of the L2-norm of the electrical potential (a) and the mean heat flux (b) at r ¼ r0 for jn ¼ �0:009, jT ¼ �0:067 when the gyroaverage
operator is considered ðrL ¼ 0:1Þ or not ðrL ¼ 0Þ.

Fig. 14. Comparison of the ðr; hÞ-slice at a given azimuthal position z0 of the contour v�1 when the gyroaverage operator is not considered (a) and when it is
(b) for jn ¼ �0:009, jT ¼ �0:067 at time t ¼ 45:55.



Fig. 15. Comparison of the ðr; hÞ-slice at a given azimuthal position z0 of the electrical potential / when the gyroaverage operator is not considered (a) and
when it is (b) for jn ¼ �0:009, jT ¼ �0:067 at time t ¼ 45:55.
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with the nonlinear model in the linear stage, but also it proves to be a good approximation of the full nonlinear model since
the quasilinear estimate of the turbulent transport is of the same order as the nonlinear one. Moreover the results obtained
with the full nonlinear gyro-water-bag model, such as the existence of both the radial turbulence regime and transport bar-
riers for instance poloidal zonal flows, are qualitatively in agreement with the results observed with the full-f gyrokinetic
Vlasov code GYSELA [41]. Quantitative comparisons with a gyrokinetic Vlasov code, like GYSELA for example, are still beyond
the scope of the present paper, but will be the starting point of further studies.
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